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CAPTIONS FOR FIGURES AND TABLES

Figure 1: Checkpoint consistency. (a) message received but not yet sent; (b) message

sent but not yet received.

Figure 2: Example checkpoint graph. (a) the checkpoint and communication pattern;

(b) the corresponding checkpoint graph.

Figure 3: The rollback propagation algorithm.

Figure 4: (a) The extended checkpoint graph when p0 initiates the recovery; (b) CP 22

and all virtual checkpoints are deleted from the checkpoint graph after the recovery.

Figure 5: Construction of the potential supergraph C, by adding ni's to G.

Figure 6: Transforming the potential recovery line by replacing 1M2 with B 2.

Figure 7: Transforming the potential recovery line by replacing A13 with !V 4.

Figure 8: The Predictive Checkpoint Space Reclamation Algorithm.

Figure 9: Execution of the PCSR algorithm (a) C - no (b) C - n, (c) C - n 2 (d) ( - n3 .

(Shaded checkpoints belong to the recovery lines and checkpoints marked "X" are discard-

able.)

Figure 10" (-7w: The checkpoint graph with N(N + 1)/2 non-discardable checkpoints.

Figure 11: Non-obsolete checkpoints and non-discardable checkpoints for the Cell place-

merit program.



Figure 12: Non-obsolete checkpoints and non-discardable checkpoints for the Channel

router program.

Figure 13: Non-obsolete checkpoints and non-discardable checkpoints for the Knight tour

program.

Figure 14: Non-obsolete checkpoints and non-discardable checkpoints for the N-queen

program.

Table 1: Execution and checkpoint parameters of the programs.



I INTRODUCTION

Numerous checkpointing and rollback recovery techniques have been proposed in the

literature for message-passing systems. They can be classified into two basic categories.

Coordinated checkpointing schemes synchronize computation with checkpointing by coordi-

nating processors during a checkpointing session in order to maintain a consistent set of

checkpoints [4-6]. Each processor only keeps the most recent successful checkpoint and roll-

back propagation is avoided at the cost of potentially significant performance degradation

during normal execution. Independent checkpointing schemes replace the above synchro-

nization by dependency tracking and possibly message logging [7-10] in order to preserve

process autonomy. Possible rollback propagation in case of a fault is handled by searching

for a consistent system state based on the dependency information. Lower run-time over-

head during normal execution is achieved by maintaining multiple checkpoints and allowing

slower recovery.

This paper considers the independent checkpointing schemes for possibly nondetermin-

istic execution. Most research on this subject has concentrated on algorithms for finding

the latest consistent set of checkpoints, i.e., the recovery line, during rollback recovery. The

same algorithms can be applied to the set of existing checkpoints during normal execution

to find the global recovery line. All the checkpoints older than the global recovery line then

become obsolete checkpoints and can therefore be discarded. When the domino effect [11]

occurs, a potentially large number of non-obsolete checkpoints have to be kept on the stable

storage and result in large space overhead.

Our approach is based on the observation that many non-obsolete checkpoints can also

be discarded because they will never become members of any future recovery line1 . The

notion of a recovery line is generalized to that of a potential recovery line. A checkpoint is

non-discardable if and only if it belongs to at least one of the potential recovery lines. By

modeling a recovery line as the maximal maximum-sized antichain on a partially ordered

'Our goal is similar to the idea of discarding useless recovery points at the earlier possible time described
in the papers by Kim et. al [1,21.
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set, an efficient algorithm is developed for finding the set of non-discardable checkpoints.

An upper bound on the size of this set given the number of processors is also derived to

show that even when domino effect persists (luring program execution, the space overhead

for maintaining multiple checkpoints will not grow without limit.

The outline of the paper is as follows. Section II describes the system model and the

checkpointing and recovery protocol; Section III gives our mathematical model of recov-

ery lines; Section IV presents the necessary and sufficient conditions for a checkpoint to be

non-discardable; the checkpoint space reclamation algorithm is developed in Section V: the

maximum number of non-discardable checkpoints is derived in Section VI and the experi-

mental evaluation is described in Section VII.

II SYSTEM MODEL AND CHECKPOINT

CONSISTENCY

A. Checkpointing and Rollback Recovery Protocol

The system considered in this paper consists of a number of concurrent processes for which

all process communication is through message passing. Processes are assumed to run on

fail-stop processors [12] and each processor is considered as an individual recovery unit [SJ.

Since studies [13] have shown that the support for nondeterministic processes is important for

practical applications, we do not assume deterministic execution. Consequently, if the sender

of a message is rolled back, the corresponding message will be invalid during reexecution.

which means that the receiver also has to be rolled back. We do not address the problem of

concurrent rollbacks due to multiple failures [9].

During normal execution, the state of each processor is occasionally saved as a checkpoint

on stable storage and can be reloaded for rollback recovery in case of a detected error. Let

CPk denote the kth checkpoint of processor pi with k > 0 and 0 < i < N - 1. where N

is the number of processors. A checkpoint inthriwl is defined to be the time between two



consecutive checkpoints on the same processor and the interval between CPik and CPi(k+l)

is called the kth checkpoint interval. Each message is tagged with the current checkpoint

interval number and the processor number of the sender. Each processor takes its check-

point independently, i.e., without synchronizing with any other processors. Each checkpoint

includes communication information (or input information [9]) containing pairs of the pro-

cessor number and checkpoint interval number, (j, m), if at least one message from the mth

checkpoint interval of processor pj has been received during the previous checkpoint interval.

A centralized checkpoint space reclamation algorithm can be invoked by any processor

periodically to reduce the space overhead by removing discardable checkpoints. First, the

communication information of all the existing checkpoints is collected to construct the check-

point graph. The rollback propagation algorithm (described later) is executed on the check-

point graph to determine the global recovery line [7]. All the checkpoints taken before the

global recovery line then become obsolete and their space can therefore be reclaimed.

When processor pi detects an error, it starts a two-phase centralized recovery procedure

[9]. First, a rollback-initiating message is sent to every other processor to request the up-to-

date communication information. Each surviving processor takes a virtual checkpoint upon

receiving the rollback-initiating message so that the communication information during the

most recent checkpoint interval is also collected. After receiving the responses, pi constructs

the extended checkpoint graph [7] and executes the rollback propagation algorithm to deter-

mine the local recovery line. A rollback-request message containing the local recovery line is

then sent to each processor and requests the involved processors to rollback and restart.

B. Checkpoint Consistency

There are two situations conc':rning the consistency between two checkpoints. In Fig. 1(a).

if processors pi and pj restart from the checkpoints CPk and CPjm respectively, the message

m is recorded as "received but not vet sent". In a general model without the assumption of

deterministic execution, message m becomes an orphan message [14]. C'Pik and CPjm are

thus inconsistent.
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Figure 1: Checkpoint consistency. (a) message received but not yet sent; (b) message sent

but not yet received.

Fig. 1(b) illustrates the second situation. The message m is recorded as "sent but not yet

received" according to the system state containing CPik and CPjm. By defining the state of

the channels to be the set of messages sent but not yet received, it has been shown [5. 15]

that checkpoints like CPik and CPm can be considered consistent if the corresponding state

of the channels is also recorded. In Koo and Toueg's paper [6], such a state was assumed

to be recorded at the sender side in the form of lost messages and the set of messages was

guaranteed to be re-delivered reliably by some end-to-end transmission protocol. Another

way of recording the channel state is through message logging. Pessimistic logging protocols

[16-18] can ensure such a state is properly recorded at the receiving end2 . As a result. we

consider the situation in Fig. l(b) as consistent.

III RECOVERY LINES

A. Partially Ordered Sets and Checkpoint Graphs

In a message-passing system, an event a happens before event b [19] if and only if

1. a and b are events on the same processor, and a occurs before b; or

2Extension of our work to systems with optimistic logging protocols is considered elsewhere [3].

4



2. a is the sending of a message by one processor and b is the receiving of the same

message by another processor; or

3. a happens before c and c happens before b.

The set of events with the "happens before" relation forms a partially ordered set, or poset

[19]. When dealing with the problem of finding a consistent set of checkpoints, we only

consider the induced subposet [201 P = (C, <), where C is the set of all checkpoints and "<"

is the "happens before" relation.

A checkpoint graph (CPG), of which the transitive closure is the poset P. is a directed

acvclic graph constructed as follows [7]. Each vertex on the checkpoint graph represents a

checkpoint. A directed edge exists from verte" CPik to vertex CPjm if j = i and m = k + 1,

or j 1 i and there exists a message sent from the kth checkpoint interval of processor pi and

received by processor p at the (m - I)th checkpoint interval. Fig. 2 gives an example of

CPG with its corresponding communication pattern.

CPoo CPoi CPo2  CPo3  CPoo CP02  CP03

4- + +4+A

P2  P

P3  P3

+ Checkpoint t
"* Message Global Recovery Line

(a) (b)

i2 g,1,re 2: Example checkpoint graph. (a) the checkpoint and communication pattern: (b)
the corresponding checkpoint graph.



Most of the ideas in this paper will be illustrated by the CPG instead of the more abstract

poset. An element a in a poset is maximal (minimal) if there does not exist any element b

such tha' a < b (b < a); correspondingly, a vertex in a CPG will be referred to as maximal

(minimal) if it has no outgoing (incoming) edge. Also, the following terminology will be used

interchangeably: a < b, a is "smaller than" b, b is "greater than" a, a can "strictly reach" b

and b is "strictly reachable from" a.

B. Maximum-Sized Antichains and Recovery Lines

A partial ordering of a set S is linear if for every two elements a and b in S, either a < b or

b < a [20]. In a poset, a subset whose elements are linearly ordered is called a chain and a

set of elements, no two of which are comparable, is called an antichain. In particular, a set

of any number of maximnal (minimal) elements clearly forms an antichain. The antichains

with the largest number of elements are called the maximum-sized antichains or H-chains

for short. Let A(Q) denote the set of antichains on a poset Q and, for A, B E A(Q). define

A -< B if and only if for all a E A there exists b E B such that a < b. [21]. Also let ,M(Q)

denote the set of maximum-sized antichains. We then have the following properties [21. 22].

LEMMA 1

(a) (A(Q). -) forms a poset;

(b) (A(Q). ") is a lattice and its qubposet (,4(Q), -) is a sublatice;

(c) For M, .1!2 E A1(Q), the join (least upper bound) .l1 V M2 = max(M U 112) and the

meet (greatest lower bound) 'M1 \ 12 = Min(31 1 U .112), where max(S) denote the set of all

maximal elements in S and min(S) is similarly defined.

Since (,4(Q), -<) is a finite lattice, there must exist a unique maximum member M(Q)

[211, called the maximal maximum-sized antichain [23] or MM-chain, such that V1 - .\[(Q)

for every 11 C k4(Q).

LEMMA 2 For any 11 E ,1(Q), there must not cxist any a E AP(Q) such that a < b for

-one b E 1.
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Proof. Suppose there exist such a E M*(Q) and b E M. M' - M*(Q) implies there exists

c E AP(Q) such that b < c. Togetlher with a < b, this leads to a < c, contradicting the fact

that AP(Q) is an antichain. 0

In this paper, we define a global checkpoint as a set of N checkpoints, one from each

processor. Based on the description of consistency in the previous section, a consistent

global checkpoint is a set of checkpoints, one from each processor and no two of which are

comparable through the "happens before" relation. A recovery line refers to the "most

recent" consistent global checkpoint. Since one special feature of the poset P = (C, <)

is that there always exists a natural chain decomposition [21] {Co, C1 ,...,CXN_} where Ci

consists of all checkpoints of processor pi, the size d(P) of the M-chains cannot be greater

than N. Furthermore, because the first checkpoint of every processor must be minimal and

the set of such checkpoints always forms an antichain of size N, d(P) is in fact equal to

N and each M-chain will consist of N elements, one from each Ci. It becomes clear that

each NI-chain is equivalent to a consistent global checkpoint. Since it is always desirable to

rollback to the most recent consistent global checkpoint in order to minimize the recovery

cost, Lemma I guarantees the existence and uniqueness of such a recovery line. i.e.. the

NIM-chain.

C. Ideals, Filters and the Reachable Sets

Given a poset P, if I is a set of elements of P with the property

a E I and b<_ a === b E 1,

I is called an ideal or a down-set of P. Similarly, a filter or an up-set, F, of P is a set of

elements such that if a E X and a < b, then b E F.

For an antichain A in P, define

I(A) = {x E P .r < a for some a E A}

F(A) {x E P a < .x fr so i a E A}.
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Then I(A) is an ideal [21] and F(A) is a filter.

LEMMA 3 A and B are antichains, then [21]
(a) I(A) 9_ I(B) A _B';

(b) .T(A) 9 .F(B) B '<A.

In terms of the CPG, the set of vertices which can reach any vertex in an antichain A is

equal to I(A) and the set of vertices reachable from any vertex in A is equal to F(A).

D. The Rollback Propagation Algorithm

The algorithm for finding the recovery line will form the basis of our checkpoint space

reclamation algorithm. The problem of finding the MM-chain in a general poset can be

transformed into that of finding a maximum matching on a bipartite graph [23]. For the

poset P = (C, <) in our problem, a simpler rollback propagation algorithm, shown in Fig. 3,

has been proposed [7] and applied to the CPG. The complexity of the algorithm is linear in

the number of edges because each edge can be removed after it is used to reach some vertex

and therefore visited at most once.

/* CP stands for checkpoint */

/* Initially, all the CPs are unmarked */

include the latest CP of each processor in the root set;
mark all CPs strictly reachable from any CP in the root set;
while (at least one CP in the root set is marked) {

replace each marked CP in the root set by the latest unmarked CP on the
same processor;
mark all CPs strictly reachable from any CP in the root set;

}
the root set is the recovery line.

Figure 3: The rollback propagation algorithm.

S



Having introduced the checkpoint graphs and the rollback propagation algorithm, we now

give an example illustrating the checkpoint space reclamation algorithm and the recovery

protocol. The global recovery line for the checkpoint graph in Fig. 2(b) is indicated by the

shaded vertices. The four checkpoints before the global recovery line are obsolete. Suppose

the extended checkpoint graph when Po initiates the recovery is as shown in Fig. 4(a).

The checkpoint graph aftei recovery (Fig. 4(b)) is then obtained by deleting the virtual

checkpoints and all the checkpoints after the local recovery line.

Local Recovery Line

P0

,P22 .

Cp

1

p3  --- P

) Virtual Checkpoint

(a) (b)

Figure 4: (a) The extended checkpoint graph when p0 initiates the recovery; (b) CP22 and
all virtual checkpoints are deleted from the checkpoint graph after the recovery.

IV POTENTIAL RECOVERY LINES

Let Gf(G) denote the set of all future graphs of a checkpoint graph G which can possibly

evolve from G during program execution in the future. We define a potential recovery line

of G as the recovery line of some checkpoint graph G' where G' E Gf (G). Since the purpose

of keeping checkpoints is for possible future recovery, a checkpoint is discardable if and only

9



if it does not belong to any potential recovery line. Being obsolete is simply a sufficient

condition for being discardable but not a necessary condition. We will show that there exist

discardable non-obsolete checkpoints.

Although the execution time for a typical program is finite, the number of future graphs

of any given checkpoint graph is enormous because the communication pattern and the

error occurrence are in general unpredictable. By characterizing the possible evolution of

a checkpoint graph, we are able to reduce the almost infinite number of situations to a

manageable number of finite cases for the problem of identifying the minimum number of

non-discardable checkpoints.

A. Adjoining New Vertices During Normal Execution

During normal execution, the size of the checkpoint graph increases as new checkpoints are

taken. Because checkpoint graphs represent program dependency, the following rules must

be satisfied when adding new vertices. For each new vertex CPik with k > 1,

Rule 1: CPk must have an incoming edge from CPi(k-l);

Rule 2: CPik can have incoming edges from an arbitrary number of existing vertices. But

it can not have any outgoing edge to any existing vertex.

Note that a checkpoint CPik that "happens before" CPjm may not be collected before

CPjm because of the unpredictable message transmission delay during the collection process.

However, such a situation can be detected by the communication information. If a vertex

CPj,, is expecting an incoming edge from a non-existing vertex CPik, CPm and its associated

incoming edges will be excluded from the existing CPG. By adding each new vertex under

this constraint, none of the new vertices can have edges pointing to any existing vertex and,

therefore, Rule 2 is enforced. The following important property is ensured by Rule 2.

PROPERTY 1 Adding a new vertex v and its associated incoming edges to an existing

CPG can not change the relation3 between any pair of existing vertices.

'3 the comparability through the "happens before" relation.
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Proof. The relation between any pair of existing vertices will be changed only if one

vertex is smaller than v and the other one is greater than v. However, Rule 2 guarantees

none of the existing vertices is greater than v. Therefore, the property holds. C1

Let 9,(G) denote the set of all potential supergraphs obtainable by adjoining new vertices

to a given checkpoint graph G according to the above rules. Lemma 4 gives the relationship

between the antichains of G and those of its potential supergraphs.

LEMMA 4 Given checkpoint graphs G = (V, E) and G' E G.(G),

(a) A(G) _ A(G');

(b) A E A(G') and A C V == A E A(G);

(c) /(G) C M(G');

(d) M E M (G') and M C V ==* M E M(G);

(e) M(G) -'< M(G').

Proof. (a) and (b) follow immediately from Property 1. By Rule 1 and the discussion

after Lemma 2, the size of the maximum-sized antichains is always fixed and equal to the

number of processors, thus (c) and (d) holds. In particular, M*(G) E M1(G) C i4(G')

implies M*(G) -< M(G'). El

One special potential supergraph of G, C, will play a very important role throughout

this paper and is constructed as follows:

1. adjoin N new vertices no, ni, ... , nN-1 to G;

2. an edge is added from the last vertex ei on each chain Ci to ni as shown in Fig. 5.

Let U denote the set of all such n,'s. We now prove the following theorem which relates the

MM-chain of any potential supergraph to the MM-chain of one of the subgraphs of G.

LEMMA 5 Given a checkpoint graph G = (VE) and 1' E V, if v E M*(G') for some

G' = (V', E') E G,(G), then v E M*(G - W) for some I¥ C U.

11



U

------ _--- -------U
P0

l1 el --

P2 e
P3~~ e3--- -imi III

G

Figure 5: Construction of the potential supergraph C, by adding ni's to G.

Proof. If v E M*(G') for some G' E 9,(G), let iVP(G') = MI U M/2 such that MI1

MV*(G t) fl V and M2 = MV*(GI) \ All as shown in Fig. 6(a). Clearly, v E Mi. Define p(u) =I

if u represents a checkpoint of processor pi and partition the set U as U = BI u B 2 where

B, = {flp(u) :u E MVI}, B 2 = fp(u,) : u E IVl 2 }

We want to show that MI U B 2 = M*(G - BI) (Fig. 6(b)).

First we prove MI U B 2 E M(6 - BI). Consider the graph G'. For every It E -,1, 2 ,

ep(,,) < It by Rule 1. According to Lemma 3, 1(ep~u4 ) 9 1(u). Since u and all the vertices

in 111 belong to the same antichain, All fn 1(u) = 0. It follows that V1 nl I(ep(u)) = 0.

Now consider the graph 6 - B1 . MI nl I(ep(u)) = 0 still holds because of Property 1. By

the construction of 6, I(np(u)) = I(ep(u)) U {np(,,) and therefore Vl1fl n (np(u)) = 0. Since

flp(u,) is maximal and so MI fl F(flp(u)) = 0. we have proved that every vertex np(u) in B2 is

incomparable with every vertex in MI. Because Ml1 is an antichain by itself and all np(u)'s

in B 2 are maximal, I U B2 E M(6 - BI).

Next we prove MI1 U B2 = VP(G - B1 ) by contradiction. Because every vertex in B2 is

maximal on the chain it belongs to, B, 9 MP(G - BI) by Lemma 2. Suppose . 1 , U B2 $
Al*(G - B1 ). There must exist 11' =M*(G - B1 ) \ B2 such that VM C V. Mi ,l'

and MI # MI. We then have F(M') C F(Ml) by Lemma 3. Now consider the graph G'.

12
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' -0 - -- U
J J

M M M M B
I I

: M2 B

P2~~~ ------- P

P3 0 - 0 - ---- ---- -- 'P

P4 P4
^ B 1

G , G- B 1G ^ A

G

(a) (b)

Figure 6: Transforming the potential recovery line by replacing 1/12 with B 2.

Recall M1 and Ml2 form an antinain in the graph G', which implies M2 fl .F(M1 ) = 0. Thus

Ml2 n .F(M') = 0 and, because Rule 2 _ %rantees A12 fl "(M) = 0, MuM2 E .M(G'). The

fact that MI U l 2 is a greater M-chain than lI U M/2 in G' contradicts M*(G') = lf U AI2.

Hence, M 1 U B 2 = M*(G - BI). It "mmediately follows that if v E M*(G') for some

G' E 9,(G), v E M/1 C M*(G- BI) for B1 C U. 0

The proof of Lemma 5 shows that although the number of poter.tial supergraphs of a

checkpoint graph G is infinite, the recovery lines of these potential supergraphs can only

intersect G in a finite number of ways. Furthermore, each of the possible intersections must

be part of the recovery line for one of the 2 V graphs - W, W C U.

B. Deleting Vertices During Rollback Recovery

Existing vertices on a checkpoint graph, for example CP22 in Fig. 4, may be deleted due

to rollback recovery. Let G, denote the extended CPG during recovery. G = (V. E) denote

the subgraph of G, without the virtual checkpoints, and G- = (V-, E-) denote the CPG

immediately after recovery. By definition, Al(G,) is the local recovery line. Define a strict

13



filter corresponding to an antichain A in a poset P as

.F(A) = F(A) \ A.

According to the recovery protocol, we have G- = G-F(M'(G,)). Let M*(G,) = 1MI U M

where M = M*(G,) n V and M, = M'(Ge) \ M 4, and define

T, = {np(,) : u E A/1}, T2 = {np(.) : u E MVIi}.

In other words, T, contains vertex ni for each processor pi which contributes a real checkpoint

to the local recovery line. Parallel to the definitions of ej, ni, U, G, T, and T2 for G. we

define e7-, n , U-, G-, T and T for G-. Clearly, Tf = T2 . The following lemma gives

several properties of G and G-.

PROPERTY 2

(a) For any u E M,, u is maximal in G-;

(b) M-(G - T1) = MI U T2 ;

(c) G E ,G)

Proof. (a) For any u E M,, u is on the local recovery line. All the vertices "greater

than", or "strictly reachable from", u are deleted from the checkpoint graph by the rollback

propagation algorithm, and therefore u is maximal in G- after recovery.

(b) Since G, E G,(G) and M*(G,) = M,UMV, we can show Mr UT2 forms the MM-chain

of G - T1 by following the proof of Lemma 5.

(c) In order to prove G E G,(G-), we have to show that all the vertices in F',(M(G,))

and their associated edges can be added back to G- to reconstruct G without violating

Rules 1 and 2. Rule 1 is obviously satisfied. By always adding the "smaller" vertices first,

Rule 2 is enforced among the vertices in .F'(M(G,)) during the process. Suppose Rule 2 is

violated when v E .F,(M(G,)) is being added, i.e., there exists u E G- such that an edge

is drawn from u to u. By the definition of F,(AV(G,)), v < u and v E Fs(M*(G,)) implies

'The subscript "r" stands for real checkpoints and "v" for virtual checkpoints.
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u E .)'(M*(G,)), contradicting the fact that G- f .n's(M(Ge)) = 0. Therefore, Rule 2 is

also satisfied and G E G,(G'). 0

We now prove Lemma 6 which shows a way to transform a recovery line of - - ,

W- C U-, to a recovery line of G - W, W C U.

LEMMA 6 For checkpoint graphs G = (V, E) and G- = (V-, E-) as defined at the begin-

ning of this subsection and any v E V-, if v E M*(G- - W-) for some W- C U-, then

v E M*(G - V) for some W C U.

Proof. Partition M*(G- - V-) =M 1 U Ml2 U 113 where M, = M*(G- - W-) f V-,

1112 = M*(G- - W-) \ N1 \ T- and M13 = M'(- - W-) \ A \ 12 . Clearly, v E M1 . Fig. 7

illustrates the above notation. Also define

iVI4 = e-,,) n-u E 31

B = {np(u) u E Mi.}

We want to prove that M, U M2 U 14 = M(G - (TI U B)).

First we show Mi U M 2 U /14 E M(G - (Ti U B)). By the definition of 14, 3'14 AL3 and

thus 1(14) g_ (a13). Since M, U M2 U MA13 forms an antichain, (M1 U 12) nlI(M 3) = 0. So

(M 1 uM)Al(M 4) = 0. Now consider thegraph d--(TT-UB). .F(M4) = 0 because vertices in

N14 are all maximal according to Property 2(a). Therefore, MUMA2 UM 4 E ,"(d--(TTUB)).

It is not hard to see that G E G,(G-) (Property 2(c)) implies G-(TUB) E G,(G--(T-UB)).

By Lemma 4(c), M U M2 U 114 E M(6 - (Ti U B)).

Now suppose M U M2 U M 4  M*(G - (T U B)). Since d - E G,(G - (T1 U B)),

M'(G - (T U B)) - M-(& - TI) by Lemma 4(e). The fact that M 2 U M 4 C T2 U 1, =

MVP(G - Tl) (Property 2(b)) and M U1 12 U 31, E M4(6G - (T1 U B)) implies that A12 U M4 _

(G- (T, U B)). Therefore, there must exist A! = .I(G-(Ti U B))\ (M 2 U M 1 ) such that

,- ,1 and M, 5 M. In fact, M' C V- because A' - '(G- (Ti U B))-< N ( G- T1 ).

Now consider the graph G - W-. F( Al) _ F(M 1 ) and (A12 U AL3 ) f nF(M,) = 0 lead

15
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Figure 7: Transforming the potential recovery line by replacing M 3 with M[4.

to (M2 U M3) n .F(M) = 0. Since Ml2 U 113 C U- and M' C V-, (M2 U Ml3 ) n I"(M{) =

0. Therefore, M' U Ml2 U M 3 E M(G- - W-), Al1 U A12 U M13 - M' U M2 U M 3 and

M 1 U M 2 U M 3 $ M' U A 2 U M 3, contradicting the fact that M*(G- - W-) = MI1 U A 2 U 13.

Therefore, M U AM!2 U M 4 = M(G - (TI U B)). Finally, we have v E M1 C M(( - W)

where W=T 1 UBCU. C

C. Potential Recovery Lines

We now apply Lemmas 5 and 6 to predicting the possible intersections of a given checkpoint

graph G and all its potential recovery lines. An operational session [9] is the intei val between

the start of normal execution and the instance of error recovery. The entire program execu-

tion can be viewed as consisting of several operational sessions ordered by session numbers.

By repeatedly applying Lemma 5 within the same operational session and Lemma 6 across

consecutive sessions, every potential recovery line of G can be transformed to the recovery

line of one of the graphs G - W, W C U.
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THEOREM 1 Given a checkpoint graph G = (V, E) and v E V,

v E M'(G') for some G' = (V', E') E 9f(G)

if and only if

v E M*(G - W) for some W C U.

Proof. The if part is trivial because G - W E 9 Q(G). We now prove the only if part.

If v E M*(G') for some G' E gf(G), without loss of generality, we may assume G is in the

kth session and G' belongs to the lth session where I > k. Let Gi denote the checkpoint

graph at the end of the ith session and G7 denote the checkpoint graph as the ith session

starts, i.e., immediately after the recovery or at the beginning of program execution. Clearly,

Gi E 98 (G7). Also let U 'and UJ- denote the set of ni's for Gi and Gy, respectively. Now

consider the graphs G and Gk, and a vertex u which exists during the evolution from Gk to

G1 . If u E M(G1 - W-) for some Wj- C Uj, u E M*(-,. - VV_, 1 ) for some VV_ C UJ-,

by Lemma 6. Since C1-1 - W-i E 9,(G- 1 ) 9 9s(G3 - 1 ), u E M 1(- - W- 1) for some

Wj- 1 _ UI by Lemma 5. By induction, we have u E M'(Gk - W/k) for some Wk C bk.

Since G' E 9,(G), v E M(GT - -) for some W - C U- by Lemma 5. By the above

induction result, v E M*(Gk - Wk) for some Wk C Uk. Finally by Lemma 5 again, we have

v E M*(G - W) for some W C U because Gk - Wk E Q,(Gk) _ 9,(G). 0

Theorem 1 shows that if any checkpoint on a given checkpoint graph G may be useful for

future recovery, it must belong to the recovery line of one of the 2 N "immediate supergraphs"

of G. Therefore, if we apply the rollback propagation algorithm to each of the 2'V graphs

0 - W, W C U, and take the union of all the resulting recovery lines, we can obtain the

set of non-discardable checkpoints. However, this is an exponential algorithm and may be

unacceptable for applications with a large number of processors. The next section describes

how this complexity can further be reduced.
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D. Deleting Vertices for Discarded Checkpoints

There is in fact another situation where existing vertices may be deleted. Once a checkpoint

is determined to be discardable and its space is reclaimed, the corresponding vertex on the

checkpoint graph can be deleted. However, since the deletion is not part of the program

execution as in the recovery process, we can not simply remove all the edges connected to

the deleted vertex. The deletion of a discarded checkpoint v must follow the procedures

described below in order to preserve the relations implied through v among the remaining

vertices.

I. A new edge is generated for each pair of incoming and outgoing edges of t.

2. The source vertices of all the incoming edges of v have to be remembered. When an

outgoing edge of v is added in the future, it is replaced by outgoing edges from these

source vertices.

Since none of the potential recovery lines can contain v and the relations among all the

remaining vertices and the new vertices remain unchanged, the deletion of v will not affect

any potential recovery line.

V PREDICTIVE CHECKPOINT SPACE

RECLAMATION

By applying Lemma 1, we will show that each of the 2 N MM-chains in Theorem 1 can be
"synthesized" from the same set of N MM-chains. An efficient algorithm is then developed

for finding the set of non-discardable checkpoints.

LEMMA 7 Given a poset P = (S, <) and A, BC S,

min(A U B) = mi n(min(A) U B).
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Proof. Let min'(A = A \ min(A). For each a' E min'(A), there exists a E min(A) such

that a < a'. Since a, a' E A U B, a' min(A U B). Also, for each non-minimal c' E A U B.

there exists c G min(A U B), c min'(A) such that c < c'. Therefore,

mzn(A U B) = min(rin(A) U min'(A) U B) = min(min(A) U B).

LEMMA 8 Given a poset P, M E .1"(P) and il - Mi E .M(P) for i E [0, k - 1] for any

finite k. Define

A Mi = (...((1 A , 1 ) A l 2 ) ... A Akl,
,E[Ok-1]

then

(a)

Ml - A M, E M(P);
,E[o.k-11

(b)

A 1, = nin( U 1i,).
&E[o~k- 11 iE[o,k- 11

Proof. Both parts will be proved by induction on k.

(a) By Lemma 1, 4(P) is a lattice and so Io A 1 E k4(P). Also, l __ Mo A M because

A14 -< Mo, NI - M1 and Mo A M1 is the greatest lower bound of M0 and M1 . We have shown

the case k = 2 is true. Assume it is true for k = n - 1. i.e..

.M -4 A V, E 4(P). (1)
,E(O n-21

Again, by Lemma 1,

A A,=( A Il,) A M,_ E 24(P).
iE[On- 1] iE[O,n-2]

Eq. (1) and H -< V,- implies

.1 5 A Mi.

ZE1On-11
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Therefore, it is also true for k = n and so we have (a).

(b) The case k = 2 is true by Lemma 1. Assume it is true for k = n - 1, i.e.,

A 11 = mnin( U M,). (2)
iE[C,n-21 iE[On-2

Applying part (a), Eq. (2) and Lemma 1, we have

A M, = ( A 1,) A MA._.1 = min(m n( U M,) U M,,_).
iE[O,n- 1] E[O,n-2] iE[O,n-2]

Lemma 7 further gives that

min(min( U Mi) U M,, 1 ) = min( U MA U A. _) = min( U Ai).
iE[O,n-2] iE[O,n-2] iE[,n-1]

Therefore, by induction, part (b) is true. 0

LEMMA 9 For every W C U,

M,(OG - W) = mi n( U (G - )).

n, CWI

Proof. If there are k vertices in the set V, without loss of generality, we may assume

they are zo, 1-.Z...l Zk_, i.e., {n: n, E W} = {z j E [0, k - il}. Since G - 9,(C; - 11).

M,(G - W) -- M(G -- zj) for all j E [0, k - 1] by Lemma 4(e).

Now consider the graph G. G E (,- zj) implies that MN(G' - z) E V(6) for

j E [0, k - 1]. Similarly, M*(, - W) E M('). By Lemma 8(a) and (b),

-w) -, A M(G- zj) = niin( U M*(G- zj)) C .A4(,). (3)
jEto,k-11 .jto,k-11

Moreover, for every j [0, k - 1], there exists u E M*( - z ) with p(u) = p(Zj) such that

it < z,. Since u E UJE[Ok- MP(G - zj), % { min(UJWIok~i1 ( - zj)). We have, by

Lemma 4(d), m in(UjE[o.k-t] M(G - z,)) E M(; - W) and therefore

rnin( U M;( - ,)) _ M(G - IV).
jE[O,k- l]
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Together with Eq. (3), we have proved

M (G - W) = min( U M(Gm- z,)) = rin( U M)(C- ).
jE[O,k-1] nEIW

In particular, the global recovery line, M(G), can be obtained by letting V = U,

M-(G) = min( U M'(G- ni)).
iE[O,N-1]

Let ND(G) denote the set of non-discardable checkpoints of G. Theorem 2 states a major

result of this paper in that it provides the basis for an efficient algorithm to find all non-

discardable checkpoints.

THEOREM 2 Given a checkpoint graph G = (V, E),

ND(G)= U M*(G-n,) nV
iE[O,N-1]

Proof. For any V E UiE[o,v-,] M(G - n1 ) n V, v E M'(C - n2 ) for some i E [0. N - 1].

Since G - ni E g(G), v E ND(G) by definition. Thus Uie[o,N-1] M-(G - ni) l V c ND(G).

Conversely, for any v E ND(G), v E V and v E AP(G - IWV) for some VV C U by

Theorem 1. Lemma 9 further gives that

v e mnin( U M'(G - ni)) _ U M-(0 - ni) _ U M-(0 - n2 ).
n, EW n,EIV iE[O,N-1]

Therefore., ND(G) C UiE[o,N-1] I'(G1 - ni) nl V and so we have

VD(G) = U mP(G - ni) n V.
iE[o,N-1]

Based on Theorem 2 we now present the Predictive Checkpoint Space Reclamation (PCSR)

algorithm in Fig. 8. The algorithm is of complexity O(NIEI), where JEI is the total number

of edges in the checkpoint graph.
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/* N is the number of processors

/* 6' and ni are as defined in Fig. 5 */

for each i E [0, N - 1] {
apply the rollback propagation algorithm to the checkpoint graph G - ni to

find the recovery line;
the checkpoints in the intersection of G and the recovery line are included in

the set ND(G);
}
all the checkpoints not in ND(G) can be reclaimed.

Figure 8: The Predictive Checkpoint Space Reclamation Algorithm.

An example illustrating the execution of the PCSR algorithm on the checkpoint graph in

Fig. 2(b) is shown in Fig. 9. The traditional checkpoint space reclamation algorithm can only

reclaim the first checkpoint of each processor. The PCSR algorithm, however, determines

that all the checkpoints marked "X" are discardable.

VI THE MAXIMUM NUMBER OF

NON-DISCARDABLE CHECKPOINTS

Traditionally, only obsolete checkpoints can be discarded. Since it is possible for the

domino effect to per3ist during program execution, a common perception is that a large

number of non-obsolete checkpoints may have to be kept and the space overhead may con-

stantly grow as a program proceeds. In a sense, this is a more serious disadvantage than

slower recovery due to the domino effect because it results in unpredictable space overhead

during normal execution. Theorem 2 not only identifies the minimum set of non-discardable

checkpoints but also places an upper bound N 2 on the number of non-discardable check-

points for a general checkpoint graph because each AP(G - ni), i E [0. Y - 1], consists of N

checkpoints. A tighter upper bound obviously exists based on the following observation:
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Figure 9: Execution of the PCSR algorithm (a) C - no (b) G - n, (c) C - n2 (d) n - l.

(Shaded checkpoints belong to the recovery lines and checkpoints marked "X" are discard-
able.)

1. A'P(G - ni) may contain vertices from the set U, but we are only concerned about

vertices in G;

2. M*(G - ni)'s may not be mutually disjoint;

3. if the last vertex ei on chain C, is maximal, M'((' - ni) will contribute only a single

vertex to the set IVD(G), i.e., ei itself.

The following property addresses the implicit relations among M*(G - ni)'s.

PROPERTY 3 Let mi. denote the iertex in M*(G; - ni) from processor p.. For i,j E

[0, N - 1] and i $ j, if mij n, and mj, # ni. then M*(6 - ni) = M(G - nj).
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Proof. mij $ nj implies M(G-nj) _ G-n--n3 . By Lemma 4(d) and (c), M'((C-ni) E

M( -i - nj) C M(G - nj) and so

M'(6 - ni) -< M*(G - nj).

Similarly, inji 7 ni leads to

M*(G - nj) -< MP(G - ni).

Since (/4(G - ni - nj), _) forms a poset (Lemma 1(b)), we have

AM(G - ni) = AP(G - nj).

It should be noted that the PCSR algorithm can be further improved by applying Prop-

erty 3. Inside the loop in Fig. 8, suppose we have found the recovery line M*(G - ni). Define

the index set F as

r = {j y _1 n3 , j E [0, N - 1] and j > i}.

Then for each later loop index j E F, the rollback propagation algorithm can be aborted

when any checkpoint from processor pi is marked. Because this would mean rji n4 ni and

MV*(G - nj) is exactly the same as M-(6' - n1).

THEOREM 3 For any checkpoint graph G = (V, E) in a system with N processors,

IND(G)I < N(N + 1)
9

Proof. By Theorem 2, we only have to consider the N' vertices mij, i,j E [0, N - 1]. For

each i E [0, N - 1], inii E V and contributes one vertex to ND(G). Since all the m,,'s come

from different processors, VD(G) now consists of N vertices. For the remaining N 2 - N

vertices with i $ j, we consider each pair mij and inji at a time and there are (N2 - N)/2

such pairs. We distinguish three cases:

Case 1: mi, = n, and mri = ni. Both inj and niji do not belong to ND(G).
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Case 2: mi. = nj and mji i, or mij 7 nj and mji = ni. This pair will possibly add one

new vertex to ND(G).

Case 3: mij 7$ n, and mji ni. It follows that M*(G - ni) = Y (G - nj) by Propeity 3,

and so mij = mjj and mji = mi. Since mjj and mii are already in ND(G), this case

does not increase the size of ND(G).

Therefore, each of the (N 2-N)/2 pairs can contribute at most one new vertex to ND(G).

We then have
N 2 - N N(N + 1)

IND(G)I <_ N + 2 2

One may argue that the upper bound derived in Theorem 3 is still of order N2.We will

next show that N(N + 1)/2 is in fact the lowest upper bound, i.e., the maximum, because

for any N we can construct a checkpoint graph, G , as shown in Fig. 10 to achieve this

upper bound. By applying the PCSR algorithm shown in Fig. 8, it is not hard to see that

all the N(N + 1)/2 vertices in Fig. 10 are non-discardable.

PO

P1

P2

N-I)

Figure 10: G,'V: The checkpoint graph with N(N + 1)/2 non-discardable checkpoints.
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When a checkpoint graph is given, we can further reduce the maximum by counting the

number, L, of maximal vertices in the set of ei's (Fig. 5). Recall that if ei is maximal,

mn = ei and mij = n3 for j -€ i. Therefore, in the discussion for each pair of mij and mji in

the proof of Theorem 3, the case when both ei and ej are maximal corresponds to Case 1.

The maximum then becomes

IND(G)I :5 N + (N) _ (L)

In particular when L = N, IND(G)I = N, which corresponds to the case of coordinated

checkpointing.

VII EXPERIMENTAL RESULTS

Four parallel programs are used to illustrate the checkpoint space reclamation capabilities

and benefits of the PCSR algorithm. Two are CAD programs written for the Intel iPSC/2

hypercube: a Cell placement program and a Channel router program. The other two are

the Knight tour program and the N-queen program written in the Chare Kernel language

which has been developed as a medium-grain, message-driven and machine-independent

parallel language [24]. We use the version of Chare Kernel on the Encore Multimax 510

multiprocessor. The periodic checkpointing routine is implemented as the interrupt service

routine for UNIX alarm(T) systeml call, where T is the checkpoint interval in seconds. Each

processor sets the alarm at the very beginning of the program and the checkpointing routine

independently. A concurrent checkpointing algorithm as described by Li et. al [25] is assumed

so that the program thread is interrupted for a small, fixed amount of time (0.1 seconds)

for taking each checkpoint, after which the checkpointing thread executes concurrently with

the program thread to finish the checkpointing. Communication traces are collected by

intercepting the "send" and "receive" system calls. Communication trace-driven simulation

is then performed to obtain the results.
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The number of processors used and the total execution time for each program are listed in

Table 1. The checkpoint interval for each program is arbitrarily chosen to be approximately

one tenth of the execution time.

Table 1: Execution and checkpoint parameters of the programs.

Benchmark Cell Channel Knight N-queen
programs placement router tour

Number of
processors 8 8 6 6
Machine Intel iPSC/2 Intel iPSC/2 Encore Encore

hypercube hypercube Multimax Multimax
Execution
time (sec) 322.7 442.0 273.2 1625.1
Checkpoint

interval (sec) 35 40 30 150

Figs. 11-14 compares our PCSR algorithm with the traditional checkpoint space reclama-

tion algorithm for typical executions of the four programs. Since obsolete checkpoints must

be discardable, the curves for non-discardable checkpoints are always below the curves for

non-obsolete checkpoints. Note that the curves do not show the actual number of checkpoints

that would be kept on stable storage during program execution because the checkpoint space

reclamation algorithm would not be continuously active throughout the program execution.

Instead, it shows the number of checkpoints which have to be kept if the algorithm is invoked

after a certain number of checkpoints have been taken. The domino effect is illustrated by

the linear increase in the number of non-obsolete checkpoints as the total number of check-

points increases. These figures show that the PCSR algorithm is particularly effective when

the domino effect persists. The largest difference between the number of non-obsolete check-

points and the number of non-discardable checkpoints for each figure is: 39 versus 7 for Cell

placement, 40 versus 12 for Channel router. 24 versus 10 for Knight tour and 41 versus 5 for

N-queen.
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Figure 11: Non-obsolete checkpoints and non-discardable checkpoints for the Cell placement

program.

VIII CONCLUSIONS

The problem of finding recovery lines for independent checkpointing schemes was for-

mulated as determining the maximal maximum-sized antichains of partially ordered sets.

We presented a method for predicting the possibility of any checkpoint becoming a member

of future recovery line, and showed that sometimes checkpoints will never be needed for

recovery so their space can be reclaimed. Based on the algorithm for finding the recovery

lines, a new checkpoint space reclamation algorithm, with complexity linear in the number

of processors N and linear in the number of edges in the checkpoint graph, was developed

for determining the set of non-discardable checkpoints. The maximum, N(N + 1)/2, on the

number of non-discardable checkpoints for an arbitrary checkpoint graph was also derived

to show that the space overhead for maintaining multiple checkpoints is bounded even when
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Figure 12: Non-obsolete checkpoints and non-discardable checkpoints for the Channel router
program.

the domino effect persists during program execution. Communication trace-driven simula-

tion for four parallel programs illustrated that the algorithm can be effective in significantly

reducing the number of retained checkpoints.
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